Programmes After Market Services NPW-1 Series Transceivers

System Module

Issue 1 10/01 ©Nokia Corporation

Table of Contents

	Page No
System Module	
Abbreviations Transceiver NPW-1	
Introduction	
Operational Modes	
Environmental Specifications	
Normal and extreme voltages	
Temperature Conditions	
Engine Module	
Baseband Module	
UEM	
Introduction to UEM	
Regulators	
RF Interface	
Charging Control	
Digital Interface	
Audio Codec	
UI Drivers	14
IR interface	14
AD Converters	14
UPP	14
Introduction	14
Blocks	
Flash Memory	
Introduction	
User Interface Hardware	
LCD	
Introduction	
Interface	
Keyboard	
Introduction	
Power Key	
Keys	
Lights	
Introduction	
Interfaces	
Technical Information	
Vibra	
Introduction	
Interfaces	
Audio HW	
Earpiece	19
Introduction	
Microphone	19
Introduction	19
Buzzer	19
Introduction	19

System Module

PAMS Technical Documentation

Battery	20
Phone Battery	20
Introduction	20
Interface	20
Battery Connector	21
Accessories Interface	
System connector	
Introduction	
Interface	
Technical Information	23
PPH-1 Handsfree	23
Introduction	23
Interface	23
IR module	24
Introduction	
Interface	
Technical Information	
Charger IF	
Introduction	
Interface	
Test Interfaces	
Production Test Pattern	
Other Test Points	
EMC	
General	
BB Component and Control IO Line Protection	
Keyboard lines	
C-Cover	
PWB	
LCD	
Microphone	
EARP	
Buzzer	
IRDA	
System Connector Lines.	
Battery Connector Lines	
MBUS and FBUS	
Transceiver Interfaces	
BB - RF Interface Connections	
BB Internal Connections	
UEM Block Signal Description	
UPP Block signals	
MEMORY Block Interfaces	
IR Block Interfaces	
Audio Interfaces	
Key/Display blocks	
Baseband External Connections	
	43

Test Pattern for Production Tests	44
RF Module	45
Requirements	45
Design	45
Software Compensations	45
Main Technical Characteristics	46
RF Frequency Plan	46
DC Characteristics	47
Power Distribution Diagram	47
Regulators	48
Receiver	48
AMPS/TDMA 800 MHz Front End	50
TDMA 1900 MHz Front End	50
Frequency Synthesizers	52
Transmitter	53
Common IF	53
Cellular Band	53
PCS Band	53
Power Control	54
Antenna Circuit	55
RF Performance	55
Antenna	55

NPW-1

PAMS Technical Documentation

System Module

List of Figures

		Page No
Fig 1	Interconnecting Diagram	8
Fig 2	System Block Diagram (simple)	11
Fig 3	Placement of keys.	16
Fig 4	Battery Connection Diagram	20
Fig 5	BMC-2 Battery contacts (BMC-3, BLC-2 have same interface)	21
Fig 6	System Connector	22
Fig 7	Accessory Detection / External Audio.	23
Fig 8	4-wire, fully differential headset connector pin layout	24
Fig 9	Top View of Production Test Pattern	26
Fig 10	Test points Located Between UEM and UPP	26
Fig 11	RF Frequency Block Plan	46
Fig 12	Power distribution	47

Abbreviations

ACCH Analog Control Channel

A/D Analog to Digital conversion

AMPS Advanced Mobile Phone System

ANSI American National Standards Institute
ASIC Application Specific Integrated Circuit

AVCH Analog Voice Channel

BB Base Band

CSD Circuit Switched Data

CSP Chipped Scale Package. The same as uBGA.CTIA Cellular Telecommunications Industry Association

D/A Digital to Analog conversion

DCCH Digital Control Channel
DSP Digital Signal Processing
DTCH Digital Traffic Channel

EDMS Electronic Data Management System

EFR Enhanced Full Rate (codec)

FCC Federal Communications Commission

IR Infrared

IrDA Infrared Data Association

IrMC Infrared Mobile Communications
IrOBEX IrDA Object Exchange Protocol

IS Interim Standard

ISA Intelligent Software Architecture

LED Light Emitting Diode

MCU Micro Control Unit / Master Control Unit

MO/MT Mobile Originated/Mobile Terminated (SMS)

OOR Out Of Range (mode)

OTA Over The Air (+ service like Programming etc.)

PC Personal Computer (PC Suite = PC program for phone memory function support)

PWB Printed Wired Board
PWM Pulse Width Modulation

RF Radio Frequency

SAR Specific Absorption Rate

SCF Software Component Factory

SMD Surface Mount Device SMS Short Message Service

SPR Standard Product Requirement

TDD Text Device for the Deaf

141 44 1

PAMS Technical Documentation

System Module

TDMA Time Division Multiple Access. Here: US digital cellular system.

TIA Telecommunications Industry Association

TTY Teletype

UEM Universal Energy Management, a Baseband ASIC.
UPP Universal Phone Processor, a Baseband ASIC.

VCTCXO Voltage Controlled temperature Compensated Crystal Oscillator

WAP Wireless Application Protocol (Browser)

Transceiver NPW-1

Introduction

The NPW-1 is a dual band transceiver unit designed for TDMA800/1900 networks. The transceiver consists of the engine module (WS8) and the various assembly parts.

The transceiver has a full graphic display and the user interface is based on a jack style UI with two soft keys. An internal antenna is used in the phone, and there is no connection to an external antenna. The transceiver also has a low leakage tolerant earpiece and an omnidirectional microphone that provides excellent audio quality.

An integrated infrared (IR) link provides connection between two NPW-1 transceivers or between a transceiver and a PC (internal data), or a transceiver and a printer.

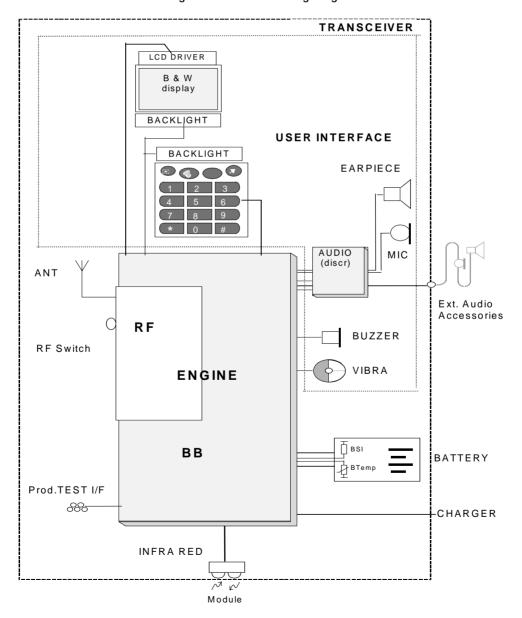


Figure 1: Interconnecting Diagram

Operational Modes

Below is a list of the phone's different operational modes:

- 1 Power Off mode
- 2 Normal Mode (Power controlled by cellular SW, includes various Active and Idle states):
- Analog Modes (800 MHz only):
 - Analog Control Channel, ACCH
 - Analog Voice Channel, AVCH
- Digital Modes (800 and 1900 MHz):
 - Control Channel, DCCH
 - Digital Voice Channel, DTCH (Digital Traffic Channel)
 - Digital Data Channel, DDCH

Both the analog and digital modes have different states controlled by the Cellular SW. Some examples are Idle State (on ACCH), Camping (on DCCH), Scanning, Conversation, NSPS (No Service Power Save, previously OOR = Out of Range).

- 3 Local mode (both Cellular SW and UI SW non active)
- 4 Test mode (Cellular SW active but UI SW non active)

Environmental Specifications

Normal and extreme voltages

Voltage range:

- nominal battery voltage: 3.6 V
- maximum battery voltage: 5.0 V
- minimum battery voltage: 3.1 V

Temperature Conditions

Temperature range:

- ambient temperature: -30...+ 60 ×C
- PWB temperature: -30...+85 ×C

PAMS Technical Documentation

storage temperature range: -40 to + 85 ×C

All of the EIA/TIA-136-270A requirements are not exactly specified over the temperature range. For example, the RX sensitivity requirement is 3dB lower over the -30 - +60 °C range.

Engine Module

Baseband Module

The core part of the transceiver's baseband (see the figure below) consists of 2 ASICs, the UEM and UPP, and flash memory. The following sections illustrate and explain these parts in detail.

PA supply RF Supplies **BATTERY** SAFARI **RECLK** RF RX/TX RFIC CTRL **UEM** 19.44MHz **PURX** IR RF RX/TX **UPP** SLEEPCLOC 32kHz CBUS/DBUS MIC AUDIO **BUZZER BB** Supplies VIBRA KLIGHT/DLIGHT MEMADDA PWR ON MEMCONT EXTERNAL AUDIO **BASEBAND** CHARGER CONNECTION FLASH **System Connector** UI

Figure 2: System Block Diagram (simple)

UEM

Introduction to UEM

UEM is the Universal Energy Management IC for digital hand portable phones. In addition to energy management, it performs all the baseband's mixed-signal functions.

Most UEM pins have 2kV ESD protection, and those signals considered to be more easily exposed to ESD, have 8kV protection within the UEM. These kinds of signals are (1) all audio signals, (2) headset signals, (3) BSI, (4) Btemp, (5) Fbus and (6) Mbus signals.

Regulators

The UEM has six regulators for baseband power supplies and seven regulators for RF power supplies. The VR1 regulator has two outputs: (1) VR1a and (2) VR1b. In addition to these, there are two current generators - IPA1 and IPA2 - for biasing purposes.

A bypass capacitor (1uF) is required for each regulator output to ensure stability.

Reference voltages for regulators require external 1uF capacitors. Vref25RF is the reference voltage for the VR2 regulator, Vref25BB is the reference voltage for the VANA, VFLASH1, VFLASH2, VR1 regulators, Vref278 is the reference voltage for the VR3, VR4, VR5, VR6, VR7 regulators, and VrefRF01 is the reference voltage for the VIO, VCORE regulators and for the radio frequency (RF).

BB Current RF VANA: 2.78Vtyp 80mAmax VR1a:4.75V 10mAmax IPA1: 0-5mA VR1b:4.75V Vflash1: 2.78Vtyp 70mAmax IPA2: 0-5mA Vflash2: 2.78Vtyp VR2:2.78V 100mAmax 40mAmax VSim: 1.8/3.0V 25mAmax VR3:2.78V 20mA VIO: 1.8Vtyp VR4: 2.78V 50mAmax 150mAmax Vcore: 1.0-1.8V VR5: 2.78V 50mAmax 200mAmax VR6: 2.78V 50mAmax VR7: 2.78V 45mAmax

Table 1: UEM Regulators

The **VANA** regulator supplies the baseband's (BB) internal and external analog circuitry. It is disabled in the *Sleep* mode.

The **Vflash1** regulator supplies the LCD, the IR-module and the digital parts of the UEM and Safari asic. It is enabled during startup and goes into the *low Iq-mode* when in the *Sleep* mode.

The **VIO** regulator supplies both the external and internal logic circuitries. It is used by the LCD, flash, bluetooth and UPP. The regulator goes into the *low lq-mode* when in the *Sleep* mode.

The **VCORE** regulator supplies the DSP and the core part of the UPP. The voltage is programmable and the startup default is 1.5V. The regulator goes into the *low lq-mode* when in the *Sleep* mode.

The **VSIM** regulator supplies the SIM card. NOT USED IN NPW-1.

The VR1 regulator uses two LDOs and a charge pump. The charge pump requires one external 1uF capacitor in the Vpump pin and a 220nF flying capacitor between the CCP and CCN pins. In practice, the 220nF flying capacitor is formed by 2 x 100nF capacitors that are parallel to each other. The VR1 regulator is used by the Safari RF ASIC.

The VR2 regulator is used to supply the (1) external RF parts, (2) lower band up converter, (3) TX power detector module and (4) Safari. In light load situations, the VR2 regulator can be set to the *low lq-mode*.

The **VR3** regulator supplies the VCTCXO and Safari in the RF. It is always enabled when the UEM is active. When the UEM is in the *Sleep* mode, the VR3 is disabled.

The VR4 regulator supplies the RX frontends (LNA and RX mixers).

The **VR5** regulator supplies the lower band PA. In light load situations, the VR5 regulator can be set to the *low lq-mode*.

The **VR6** regulator supplies the higher band PA and TX amplifier. In light load situations, the VR6 regulator can be set to the *low lq-mode*.

The **VR7** regulator supplies the VCO and Safari. In light load situations, the VR7 regulator can be set to the *low lq-mode*.

The **IPA1** and **IPA2** are programmable current generators. A 27kW/1%/100ppm external resistor is used to improve the accuracy of the output current. The IPA1 is used by the lower PA band and IPA2 is used by the higher PA band.

RF Interface

The interface between the baseband and the RF section is also handled by the UEM. It provides A/D and D/A conversion of the in-phase and quadrature receive and transmit signal paths. It also provides A/D and D/A conversions of received and transmitted audio signals to and from the UI section. The UEM supplies the analog AFC signal to the RF section, according to the UPP DSP digital control.

Charging Control

The CHACON block of the UEM asics controls charging. The needed functions for the charging controls are the (1) pwm-controlled battery charging switch, (2) charger-monitoring circuitry, (3) battery voltage monitoring circuitry and (4) RTC supply circuitry for backup battery charging (Not used in NPW-1). In addition to these, external components are needed for EMC protection of the charger input to the baseband module.

Digital Interface

Data transmission between the UEM and the UPP is implemented using two serial connections, DBUS (programmable clock) for DSP and CBUS (1.0MHz GSM and 1.08MHz TDMA) for MCU. The UEM is a dual voltage circuit: the digital parts are run from 1.8V and the analog parts are run from 2.78V. The Vbat (3,6V) voltage regulators's input is also used.

The baseband supports two external microphone input areas and one external earphone output. The input can be taken from an internal microphone, a headset microphone or from an external microphone signal source through a headset connector. The output for the internal earpiece is a dual-ended type output, and the differential output is capable of driving 4Vpp to the earpiece with a 60 dB minimum signal as the total distortion ratio. The input and output signal source selection and gain control is performed inside the UEM Asic, according to the control messages from the UPP. A buzzer and an external vibra alert control signal are generated by the UEM with separate PWM outputs.

UI Drivers

There is a single output driver for the buzzer, vibra, display and keyboard LEDs and the IR in the side of the UEM. These generate PWM square wave for the various devices.

IR interface

The IR interface is designed and implemented into the UEM. The *low frequency* mode of the IR module covers speeds up to 115.2 kbit/s. The device (Vishay) transceivers integrate a sensitive receiver and a built-in power driver. The combination of a thin, long resistive and inductive wiring should be avoided. The input (Txd, SD/Mode) and the output Rxd should be directly coupled to the I/O circuit. The VBAT regulator supplies the power to transmit the LED and serial resistor limits' current. Upon receiving infrared data to IR LED, it goes straight to the UEM via the RXD line. The Vflash1 is the power supply for the IR module, except for transmission. The IR module has one control pin to control the shut down. The control lever shifter is used to change the proper voltage for shutdown to the IR module from the UPP.

AD Converters

The UEM is equipped with a 11-channel analog to digital converter. Some AD converter channels (LS, KEYB1-2) are not used in NPW-1. The AD converters are calibrated in the production line.

UPP

Introduction

NPW-1 uses the UPPv4M ASIC. The RAM size is 4M. The processor architecture consists of both the DSP and the MCU processors.

Blocks

The UPP is internally partitioned into two main parts: (1) the Brain and (2) the Body.

1 The Processor and Memory System (that is, the Processor cores, Mega-cells, internal memories, peripherals and external memory interface) is known as the Brain.

The Brain consists of the following blocks: (1) the DSP Subsystem (DSPSS), (2) the MCU Subsystem (MCUSS), (3) the emulation control EMUCtI, (4) the program/data RAM PDRAM and (5) the Brain Peripherals—subsystem (BrainPer).

NPW-1

2 The NMP custom cellular logic functions are known as the Body.

The Body contains interfaces and functions needed for interfacing other base-band and RF parts. The body consists of, for example, the following sub-blocks: (1) MFI, (2) SCU, (3) CTSI, (4) RxModem, (5) AccIF, (6) UIF, (7) Coder, (8) BodyIF, (9) PUP.

Flash Memory

Introduction

The NPW-1 transceiver uses a 32 Mbit flash as its external memory. The VIO regulator is used as a power supply for normal in-system operation. An accelerated program/erase operation can be obtained by supplying Vpp of 12 volt to the flash device.

The device has two read modes: *asynchronous* and *burst*. The Burst read mode is utilized in NPW-1, except for the start-up, when the asynchronous read mode is used for a short time.

System Module

User Interface Hardware

LCD

Introduction

NPW-1 uses a black & white GD46 84x48 full dot matrix graphical display. There are two suppliers for this LCD: Seiko Epson and Philips. The LCD module includes the LCD glass, the LCD COG-driver, an elastomer connector and a metal frame. The LCD module is included in the lightquide assembly module.

Interface

The LCD is controlled by the UI SW and the control signals are from the UPP asic. The VIO and Vflash1 regulators supply the LCD with power.

The LCD has an internal voltage booster and a booster capacitor is required between Vout and GND.

Pin 3 (Vss9) is the LCD driver's ground and Pin 9 (GND) is used to ground the metal frame.

Keyboard

Introduction

The NPW-1 keyboard style follows the Nokia Jack style, without side keys for volume control. The PWR key is integrated so that it is part of the IR window and located on top of the phone.

Figure 3: Placement of keys.

Power Key

All signals for the keyboard come from the UPP asic, except PWRONX line for the power key signal which is connected directly to the UEM. The pressing of the PWR key grounds the PWRONX line and the UEM generates an interrupt to UOO, which is then recognized as a PWR key press.

Keys

Other keys are detected so that when a key is pressed down, the metal dome connects one S-line and one R-line of the UPP to the GND and creates an interrupt for the SW. This kind of detection is also known as *metaldome detection*. The matrix of how lines are connected and which lines are used for different keys is described in the Table 1. The S-line SO and R-line R5 are not used at all.

S0 S1 S2 S3 S4 Returns / Scans NC NC R0 NC Send End NC Soft left Up Down Soft right R1 NC 4 7 R2 1 NC 2 5 8 0 R3 NC 6 # R4 3 9 NC NC NC NC NC R5

Table 2: Matrix of Key Detection Lines

where NC = Not Connected

Lights

Introduction

NPW-1 has 10 LEDs for lighting purposes. Six of them are for the keyboard and four for the display. The LED type is Osram LGM470, green light emitting and SMD through hole mounted.

Interfaces

The display lights are controlled by a Dlight signal from the UEM. The Dlight output is the PWM signal, which is used to control the average current going through the LEDs. When the battery voltage changes, the new PWM value is written onto the PWM register. In this way, the brightness of the lights remains the same with all battery voltages within range. The frequency of the signal is fixed at 128Hz.

The keyboard lights are controlled by the Klight signal from the UEM. The Klight output is also a PWM signal and is used in the same way as Dlight.

Technical Information

Each LED requires a hole in the PWB, in which the body of the LED locates in hole and terminals are soldered on the component side of the module PWB. The LEDs have a white plastic body around the diode, and this directs the emitted light better to the UI-side. The current for the LCD lights is limited by the resistor between the Vbatt and LEDs. For the keyboard lights there are resistors in parallel.

Vibra

Introduction

The vibra is located on the D-cover and is connected by spring connectors on the bottom left-hand side of the engine. The vibra motor is supplied by Namiki.

Interfaces

The vibra is controlled by the PWM signal VIBRA from the UEM. With this signal, it is possible to control both the frequency and pulse width of the signal. The pulse width is used to control the current when the battery voltage changes. With the frequency control, it is possible to search for the optimum frequency to have silent and efficient vibrating.

Table 3: Electrical Parameters

Parameter	Requirement	Unit
Rated DC Voltage	1.3	V
Rated speed	9500 ±3000	rpm
Rated current	115 ±20	mA
Starting current	150 ±20	mA
Armature resistant	8.6	ohm
Rated DC voltage being able to use	1.2 to 1.7	V
Starting DC voltage	min. 1.2	V

Audio HW

Earpiece

Introduction

The Philips Speaker System 13mm speaker capsule is used in NPW-1.

The speaker is a dynamic one. It is very sensitive and capable of producing relatively high sound pressure also at low frequencies. The speaker capsule and the mechanics around it together make the earpiece.

Microphone

Introduction

The microphone is an electret microphone with an omnidirectional polar pattern. It consists of an electrically polarized membrane and a metal electrode which form a capacitor. Air pressure changes (for example, sound) moves the membrane, which causes voltage changes across the capacitor. Because the capacitance is typically 2 pF, a FET buffer is needed inside the microphone capsule for the signal generated by the capacitor. Because of the FET, the microphone needs a bias voltage.

The microphone manufacturers for the NPW-1 transceiver are Matsushita and Hosiden.

Buzzer

Introduction

The operating principle of the buzzer is magnetic. The diaphragm of the buzzer is made of magnetic material and it is located in a magnetic field created by a permanent magnet. The winding is not attached to the diaphragm, as is the case with the speaker. The winding is located in the magnetic circuit so that it can alter the magnetic field of the permanent magnet, thus changing the magnetic force affecting the diaphragm. The buzzer's useful frequency range is approximately from 2 kHz to 5kHz.

The Buzzer manufacturer for the NPW-1 transceiver is Star.

Battery

Phone Battery

Introduction

The BMC-2 battery (Ni-MH 640mAh) is be used in the NPW-1 transceiver by default. It is also possible to use the BMC-3 (Ni-MH 900mAh) and BLC-2 (Li-ion 850mA) batteries.

Interface

The battery block contains NTC and BSI resistors for temperature measurement and battery identification. The BSI fixed resistor value indicates the chemistry and default capacity of a battery. The NTC-resistor measures the battery temperature. Temperature and capacity information is needed for charge control. These resistors are connected to BSI and BTEMP pins of the battery connector. The phone has pull-up resistors for these lines so that they can be read by A/D inputs in the phone (see the figure below). Serial resistors in the BSI and BTEMP lines are for ESD protection. Both lines also have spark caps to prevent ESD.

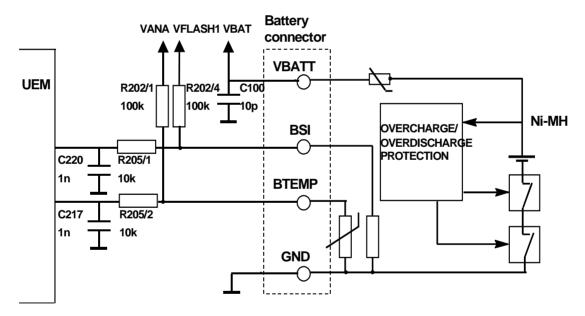
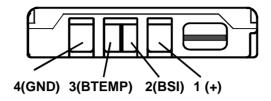



Figure 4: Battery Connection Diagram

The batteries have a specific red line, which indicates if the battery has been subjected to excess humidity. The batteries are delivered in the *protection* mode, which gives longer storage time. The voltage seen in the outer terminals is zero (or floating), and the battery is activated by connecting the charger. The battery has internal protection for overvoltage and overcurrent.

PAMS Technical Documentation

Figure 5: BMC-2 Battery contacts (BMC-3, BLC-2 have same interface).

Battery Connector

NPW-1 uses the spring type battery connector. This makes the phone easier to assemble in production and the connection between the battery and the PWB is more reliable. The battery connector is manufactured by Molex.

Table 4: Battery Connector Interface

#	Signal name	Connecte	ed from - to	Batt.	Signal p	properties	Description/ Notes
					A/Dlevels	freq./timing	
1	VBAT	(+) (batt.)	VBAT	I/O	Vbat	3.0-5.1V	Battery voltage
2	BSI	BSI (batt.)	UEM	Out	Ana		Battery size indicator
3	ВТЕМР	BTEMP (batt.)	UEM	Out	Ana	40mA/ Switch 400mA	Battery temperature indicator
4	GND	GND	GND	GND	Gns		Ground

Accessories Interface

System connector

Introduction

NPW-1 uses accessories via a system connector.

Interface

The interface is supported by fully differential 4-wire (XMICN, XMICP, XEARN and XEARP) accessories. NPW-1 supports the HDC-5 headset, LPS-3 loopset and the PPH-1 car kit.

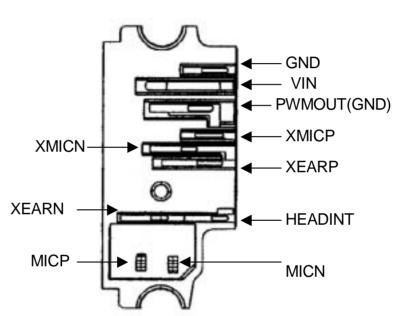


Figure 6: System Connector

An accessory is detected by the HeadInt- line, which is connected to the XEARP inside the system connector. When an accessory is connected, it disconnects XEARP from HEADINT, and the UEM detects it and generates an interrupt (UEMINT) to the MCU. After that, the HOOKINT line is used to determine which accessory is connected. This is done by the voltage divider, which consists of the phone's internal pull-up and accessory-specific pull-down. The voltage generated by this divider is then read by the ad- converter of UEM. The HOOKINT- interrupt is generated by the button in the headset or by the accessory external audio input.

NOKIA

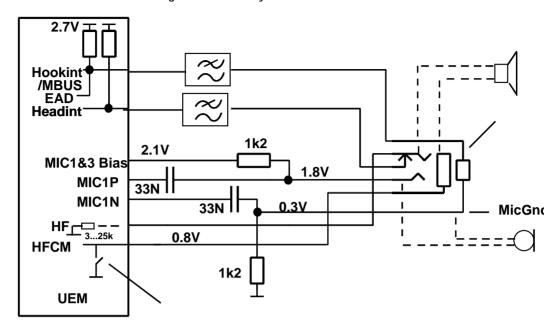


Figure 7: Accessory Detection / External Audio.

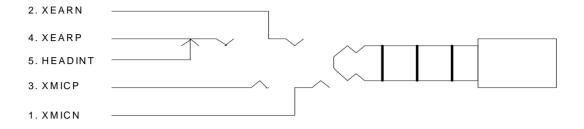
Technical Information

ESD protection is made up by (1) spark caps, (2) a buried capacitor (Z152 and Z154-157) and (3) ±8kV inside the UEM. The RF and BB noises are prevented by inductors.

PPH-1 Handsfree

Introduction

The PPH-1 handsfree device


- provides the charging and handsfree functionality
- has a built-in speaker
- and uses a phone microphone, but also has a connector for the HFM-8 optional external microphone (using HFM-8 mutes phone microphone)

Interface

A 4-wire interface is implemented with 2.5mm diameter round plug/jack which is otherwise like a so-called standard stereo plug, but the innermost contact is split into two.

Figure 8: 4-wire, fully differential headset connector pin layout

IR module

Introduction

The IR module integrates a sensitive receiver and a built-in power driver complaint to the IrDA 1.2 standard. The IR module is located at the top of the engine side, next to the Power switch.

The IR module manufacturer for the NPW-1 transceiver is Vishay.

Interface

The Vflash1 regulator supplies the IR module, except for the transmit LED. The transmit LED is supplied by the VBAT regulator and the maximum current is limited by a serial resistor. The bypass capacitor is needed in the VBAT line for proper voltage. TXD and RXD lines are connected to the UEM and shutdown is controlled by the UPP (GENIO(10)) through a level-shifter V350.

Technical Information

The IR interface is located in the UEM. The IR link supports speeds from 9600 bit/s to 1.152 MBit/s, up to 1m.

Charger IF

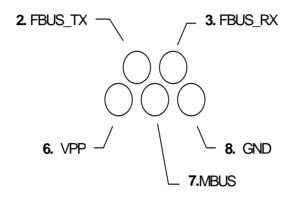
Introduction

The charger connection is implemented through the system connector. The system connector supports charging with both plug chargers and desktop stand chargers.

There are three signals for charging. The charger GND pin is used for both desktop and plug chargers as well as for charger voltage. The PWM control line, which is needed for 3-wire chargers, is connected directly to the GND in the PWB module, so the NPW-1 engine does not provide any PWM control for chargers. Charging controlling is done inside the UEM by switching the UEM's internal charger switch on and off.

System Module

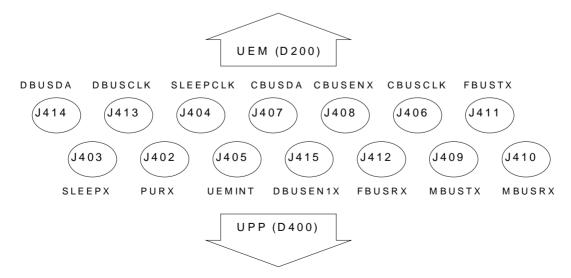
Interface


The fuse F100 protects the phone from too high currents, for example, when broken or pirate chargers are used. L100 protects the engine from RF noises, which may occur in the charging cable. V100 protects the UEM ASIC from reverse polarity charging voltage and from too high charging voltages. C106 is also used for ESD and EMC protection. Spark gaps right after the charger plug are used for ESD protection.

Test Interfaces

Production Test Pattern

The interface for NPW-1 production testing is a 5pin pad layout in the BB area (see the figure below). The production tester connects to these pads by using spring connectors. The interface includes the MBUS, FBUSRX, FBUSTX, VPP and GND signals. The pad size is 1.7mm. The same pads are used also for AS test equipment, such as the module jig and the service cable.


Figure 9: Top View of Production Test Pattern

Other Test Points

As BB asics and flash memory are CSP components, the visibility of BB signals is very poor. This makes the measuring of most of the BB signals impossible. In order to debug the BB, at least to some level, the most important signals can be accessed from the 0.6mm test points. The figure below shows the test points located between the UEM and the UPP. There is an opening in the baseband shield to provide access to these pads.

Figure 10: Test points Located Between UEM and UPP

EMC

General

The EMC performance of NPW-1's baseband is improved by using a shield to cover the main components of the BB, such as the UEM, UPP and Flash. The UEM has internal protection against a ±8kV ESD pulse. The BB-shield is soldered to the PWB and it also increases the rigidity of the PWB in the BB area, thus improving the phone's reliability. The shield also improves the thermal dissipation by spreading the heat more widely.

The BB and RF shield are connected together on the PWB and the protective metal deck underneath the battery is grounded to RF shield.

BB Component and Control IO Line Protection

Keyboard lines

ESD protection for keyboard signals is implemented by using metaldome detection. Grounded keydomes are very effective for ESD protection and do not require additional components for ESD protection. The distance from the A-cover to the PWB is made longer using spikes in the key mat. The C-cover metallization also protects the keyboard lines.

C-Cover

The C-cover on the UI-side is metallized on the inner surface (partly) and is grounded to the GND module. All areas in which the plated C-cover touches the PWB surface are grounded and the solder masks are opened.

PWB

All edges are grounded on both sides of the PWB and the solder mask is opened in these areas. The aim is that any ESD pulse faces the ground area when entering the phone, for example, between the mechanics covers.

All holes in the PWB are grounded and plated through holes. The only exception is the LED holes, which cannot be grounded.

LCD

ESD protection for LCD is implemented by connecting the metal frame of the LCD into ground. The connection is only on one side, at the top of the LCD, which is not the best solution. The software takes care of the LCD's crashing in case of an ESD pulse.

Microphone

The microphone's metal cover is connected to the GND and there are spark gaps on the PWB. The microphone is an asymmetrical circuit, which makes it well protected against EMC.

EARP

The EARP is protected with C-cover metallization and with a plastic-fronted earpiece.

PWB openings with the C-cover metallization protect the buzzer from ESD.

IRDA

PWB openings with C-cover metallization protect IRDA lines from ESD.

System Connector Lines

Table 5: System Connector lines

	System Con	System Connector signals that have EMC protection										
Protection type	VIN	XMIXP	XMICN	XEARP	XEARN	HEADINT	MICP					
ferrite bead (600 /199MHz)		Х	Х	Х	Х		Х					
ferrite bead (420 /100MHz)	Х											
spark gaps		Х	х	Х	Х	Х	Х					
PWB capacitors		Х	х	Х	Х	Х	Х					
RC-circuit			х	Х	Х	Х	Х					
capacitor to ground	Х	Х	Х	Х	Х							

Battery Connector Lines

BSI and BTEMP lines are protected by spark gaps and the RC-circuit (10k & 1n), in which the resistors are size 0603.

MBUS and FBUS

The opening in the protective metal deck, underneath the battery, is so small that ESD does not get into the MBUS and FBUS lines in the production test pattern.

Transceiver Interfaces

The tables in the following sections illustrate the signals between the various transceiver blocks.

BB - RF Interface Connections

All the signal descriptions and properties in the following tables are valid only for active signals, and the signals are not necessarily present all the time.

Note: In the following tables, the nominal signal level of 2.78V is sometimes referred to as 2.7V.

Table 6: BB - RF Interface Signal Description

RIP	Signal name		ected - to	BB I/O		Signal Properties A/D Levels-Freq./ Timing resolution		Description / Notes		
RFICO	CNTRL(2:0)			RF IC	RF IC Control Bus from UPP to RF IC (SAFARI)					
0	RFBUSCLK	UPP	RFIC	In	Dig	0/1.8V (0: <0.4V	9.72 MHz	RF Control serial bus bit clock		
1	RFBUSDA	UPP/ RFIC	RFIC UPP	1/0	Dig	1: >1.4V		Bi-directional RF Control serial bus data.		
2	RFBUSEN1X	UPP	RFIC	In	Dig			RFIC Chip Set X		
PUL (2:0)			Power	r Up Res	set from UEM to	RF IC (S	AFARI)		
0	PURX	UEM	RFIC	Out	Dig	0/1.8V	10us	Power Up Reset for RFIC		
								SLCLK & SLEEPX not used in RF		
GEN	GEN (28.0)				General I/= Bus connected to RF, see also separate collective GEN(28.0) table Control lines from UPP GENIOs to RF					
5	TXP1	RFIC, Lo- band mixer	UPP	Out	Dig	0/1.8V	10 us	Low Band Tx enabled		
6	TXP2	RFIC	UPP	Out	Dig	0/1.8V		High band Tx enabled		
RFCLI	K (not BUS -> no	o rip #)			System Clock from RF to BB, original source VCTCXO, buffere frequency shifted, WAM only) in RF IC (SAFARI)					
	RFCLK	VCTCX O -> RFIC	UPP	In	ANA	800mVpp typ (FET probed) Bias DC blocked at UPP input	19.44 MHz	System Clk from RF to BB		
	RFCIk GND	RF	UPP	In	Ana	0		System Clock slicer Ref GND, not separated from pwb GND layer		
SLOW	SLOWAD(6:0)					Slow Speed ADC Lines from RF block				

RIP	Signal name		ected 1 - to	BB	I/O	Signal Prop A/D Levels- Timing reso	-Freq./	Description / Notes
5	PDMID	RF Power detec- tion mod- ule	UEM	In	Ana	0/2.7V dig	0/VR2	Power detection module identi- fication to slow ADC (ch 5, pre- vious VCTCXO Temp) signal to UEM
6	PATEMP	RF Power detec- tion mod- ule	UEM	In	Ana	0.1-2.7V	-	Tx PA Temperature to UEM, NTC in Power Detection Module
RFCC	DNV(9:0)		•	RF-B ages	B differ	ential Analog Si	gnals: Tx	I&Q, Rx I&Q and reference volt-
0	RXIP	RFIC	UEM	In	Ana	1.4Vpp max.		Differential positive/negative
1	RXIN	1				diff. 0.5Vpp typ bias		in-phase Rx Signal
2	RXQP					1.30V		Diff. positive/negative quadra-
3	RXQN							ture phase Rx Signal
4	TXIP UEM	UEM	RFIC	Out	Ana	2.2Vpp max.		Differential positive/negative
5	TXIN		IN		diff. 0.6Vpp typ bias		in-phase Tx Signal	
6	TXQP					1.30V		Diff. positive/negative quadra-
7	TXQN							ture phase Tx Signal
9	VREFRF01	UEM	RFIC	Out	Vref	1.35 V		RF IC Reference voltage from UEM
RFAU	IXCON(2:9)	•		RF-B	B Analo	g Control Signa	UEM	
1	TXPWRDET	TXP Det.	UEM	In	Ana	0.1-2.4V	50 us	Tx PWR Detector Signal to UEM
2	AFC	UEM	VCTCX O	Out	Ana	0.1-2.4V		Automatic Frequency Control for VCTCXO
VRF (Globals instead o	of Bus						EM to RF. Current values are of neasured values of RF
	VR1 A	UEM	RFIC	Out	Vreg	4.75 V +- 3%	10mA max.	UEM, charge pump + linear regulator output. Supply for UHF synth phase det
	VR1 B	UEM	RFIC	Out	Vreg	4.75 V +- 3%	10mA max.	UEM, charge pump + linear regulator output. Supply for Tx VHF VCO.
	VR2	UEM	RFDisc r./RFIC	Out	Vreg	2.78 V +- 3%	100 mA max.	UEM linear regulator. Supply voltage for Tx IQ filter and IQ to Tx IF mixer.
	VR3	UEM	VCTCX O	Out	Vreg	2.78 V +- 3%	20mA max.	UEM linear regulator. Power supply to VCTCXO + RFCLK Buffer in RF IC.

RIP	Signal name	Connected from - to		BB I/O		Signal Properties A/D Levels-Freq./ Timing resolution		Description / Notes
	VR4	UEM	RFIC	Out	Vreg	2.78 V +- 3%	50mA max.	UEM linear regulator. Power supply for LNA/RFIC Rx chain.
	VR5	UEM	RFIC	Out	Vreg	2.78 V +- 3%	50mA max.	UEM linear regulator. Power supply for RF low band PA driver section.
	VR6	UEM	RFIC	Out	Vreg	2.78 V +- 3%	50mA max.	UEM linear regulator. Power supply for RF high band PA driver section.
	VR7	UEM	RFIC, UHF VCO	Out	Vreg	2.78 V +- 3%	45mA	UEM linear regulator. Power supply for RF Synthes.
	IPA1	UEM	RF PA	Out	lout	0-5 mA		Settable Bias current for RF PA L-Band
	IPA2	UEM	RF PA	Out	lout	0-5 mA		Settable Bias current for RF PA H-Band
	VFLASH1	UEM	RFIC	Out	lout	2.78V	12mA	UEM linear regulator common for BB. RFIC digital parts and F to BB digl. IF.
VBAT	VBATT, Global							
	VBATTRF	Batt Conn	RFPA	Out	Vbat t	35V	01A 2A peak	Raw Vbatt for RF PA

BB Internal Connections

UEM Block Signal Description

Table 7: UEM Block Signals to UPP

RIP	Signal name	Connected from - to		UEN	/I I/O	Signal Properties A/D Levels-Freq./ Timing resolution		Description / Notes
RFCO	NVDA(5:0)*					1.8V digital interface between UPP and UEM. RF converter CLK. Rx and I&Q data (bit stream signals).		
0	RFCONVCLK	UPP	UEM	In	Dig	0/1.8V	4.86 MHz/ Digi 3.24 MHz / Ana	RF Converter Clock
1	RXID	UEM	UPP	Out				(PDM) RxI Data
2	RXQD							(PDM) RxQ Data
3	TXID	UPP	UEM	In				(PDM) Txl Data
4	TXQD							(PDM) TxQ Data
5	AUXDA	UPP	UEM	In				Auxiliary DAC Data

RIP	Signal name		Connected from - to		UEM I/O Signal Properties A/D Levels-Freq./ Timing resolution		Description / Notes					
RFCONVCTRL(2:0)*					1.8V digital interface between UPP (DSP) and UEM. RF converter UEM RF IF bidirectional serial Control Bus, "DBUS".							
0	DBUSCLK	UPP	UEM	In	Dig	0/1.8V	9.72MHz	Clock for Fast Control to UEM				
1	DBUSDA			In/ Out				Fast Control Data to/from UEM				
2	DBUSENX			In				Fast Control Data Load / Enable to UEM				
AUDL	JEMCTRL(3.0)*				digital i CBUS"	nterface betweer	n UPP (MCU)	and UEM. Bidirectional Control				
0	UEMINT	UEM	UPP	Out	Dig	0/1.8V		UEM Interrupt				
1	CBUSCLK	UPP	UEM	In			1.08MHz	Clock for control/Audio Convertors in UEM				
2	CBUSDA			In/ Out			1.08Mbit/ s	Control data				
3	CBUSENX			In				Control Data Load Signal				
AUDI	ODATA(1:0)*			1.8V digital audio interface between UPP and UEM audio codec. PDM data clocked by CBUSCLK								
0	EARDATA	UPP	UEM	In	Dig	0/1.8V	1.08Mbit/ s	PDM Data for Downlink Audio, clocked by CBUSCLK				
1	MICDATA	UEM	UPP	Out				PDM Data forUplink Audio, clocked bu CBUSCLK				
PUSL	(2:0)*			Powe	Power-Up & Sleep Control lines							
0	PURX	UEM	UPP RFIC	Out	Dig	0/1.8V		Power Up Reset, 0 at reset				
1	SLEEPX	UPP	UEM	In				Power Save Functions, 0 at sleep				
2	SLEEPCLK	UEM	UPP	Out			32 KHz	32 KHz Sleep Clock				
IACCI	DIF(5:0)*				ternal 1 er UEM	.8V Digital Acces	ssory Buses b	etween UPP and 2.7V level				
0	IRTX	UPP	UEM	Out	Dig	0/1.8V	1.152	Infrared Transmit				
1	IRRX	UEM	UPP	In			Mbit/s max	Infrared Receive				
2	MBUSTX	UPP	UEM	In	Dig	0/1.8V	9k6 b/s	MBUS Transmit				
3	MBUSRX	UEM	UPP	Out			9k6 b/s < 7 Mb/s	MBUS Receive / FDL CIk				
4	FBUSTXI FBUSRXI	UPP UEM	UEM UPP	In Out	Dig	0/1.8 V	<115kb/s <1Mb/s	FBUS Transmit / FDL Tx				
5	ΙΔΟΟΚΑΙ	ULIVI	UFF	Out			<115kb/s <115kb/s <7Mb/s	FBUS Receive / FDL Rx				

Table 8: UEM Block Signals to BB and RF

RIP	Signal name		ected 1 - to	UEM I/O		Signal Properties A/D Levels-Freq./ Timing resolution		Description / Notes	
SLOWAD(6:0)*				SLow Speed ADC Lines, UEM external					
0	BSI	BAT- TERY	UEM	In	Ana	0-2.7V		Battery Size Indicator/FDL init Battery Temperature	
1	BTEMP	IEKI						battery remperature	
5	PDMid	RF PDMod		0-2.7V		Power detection module identification to slow ADC (ch, previ-			
6	PATEMP	RF, PDMod NTC						ous VCTCXO Temp) signal to UEM.	
RFCO	NV(9:0)*	I.	I.	RF -	BB Anal	og Signals: Tx I&	Q, Rx I&Q ar	nd ref	
0	RXIP	RFIC	UEM	In	Ana	1.4Vpp max		Differential positive/negative	
1	RXIN					diff. 0.5Vpp typ bias 1.30V		in-phase Rx Signal	
2	RXQP							Diff. positive/negative quadra-	
3	RXQN							ture phase Rx Signal	
4	TXIP	UEM	RFIC	Out	Ana	2.2Vpp max diff. 0.6VppTyp Bias 1.30V		Differential positive/negative in-phase Tx Signal	
5	TXIN							III-pilase ix signal	
6	TXQP							Differential positive/negative quadrature phase Tx Signal	
7	TXQN							quadrature phase 1x Signal	
9	VREFRF01	UEM	RFIC	Out	Vref	1.35V		RF IC Reference voltage from UEM	
HP IN	ITERNAL AUDIO								
AUDI	0(4:0)		HP Inter	nal ana	log ear	& microphone IF	between UE	M and Mic/Ear circuitry	
0	EARP	UEM	Ear-	Out	Ana	1.25V	Audio	Differential signal to HP inter-	
1	EARN		piece					nal Earpiece. Load resistance 32 ohm.	
2	MIC1N	Mic	UEM	In	Ana	100mVpp	Audio	Differential signal from HP	
3	MIC1P					max diff.		internal MIC, 2mV nominal	
4	MICB1	Mic	UEM	Out	V bias	2.1V typ./ <600 uA	DC Bias	Bias voltage for internal MIC	
EXTE	rnal audio int	ERFACE	•	•	•				
XAUDIO(9:0)*		External Audio IF betwee			een UEM and X-a	audio circuitr	у		
0	HEADINT	SysCon /HSet	UEM	In	Dig	0/2.7V		Input for Headset Connector HeadInt Switch	
1	HF	UEM	SysCon /HSet	Out	Ana	1.0Vpp bias 0.8V	Audio	External Earpiece Audio Signal Reference output for DC cou-	
2	HFCM				Ana	0.8 Vdc		pled external Earpiece	

PAMS Technical Documentation

RIP	Signal name		ected - to	UEN	/I I/O	Signal Properties A/D Levels-Freq./ Timing resolution		Description / Notes	
3	MICB2	UEM	SysCon /HSet	Out	V bias	2.1V typ/ 600 uA		Bias voltage for external MIC	
4 5	MIC2P MIC2N	SysCon /Head- set	UEM	In	Ana	200mVpp max diff	Audio	Differential signal from exter- nal MIC	
6	HOOKINT	Sys Con	UEM	In	Ana/ Dig	02.7V	DC	HS Button interrupt, External Audio Accessory Detect (EAD)	
CHAF	GER INTERFACE				I.				
CHAF	RGER lines, no bu	IS*							
	VCHARGIN	Charge r	UEM	In	Vchr	< 16 V <1.2 V	DC	Vch from Charger Connector, max. 20 V	
	GND				GND			GND from/to Charger connector	
PWR	ONX *		Power O	Power On Signal, see also the UI/keyboard					
	PWRONX	UI	UEM	In	Dig	0/Vbatt		Power button	
	GND				GND			GND from/to Charger connector	
RFAU	XCONV(2:0)		RF-BB auxiliary analog signals						
0									
1	TXPWRDET	TXPow. Det. Mod.	UEM	In	Ana	0.1-2.7V		Tx PWR Detector Output to UEM	
2	AFC	UEM	VCTCX O	Out	Ana	0.1-2.4V	11bits	AFC control voltage to VCTCXO, default about 1.3V	
IRIF,	no bus no rips		UEM 2.7						
	IRLEDC	UEM	IR	Out	Dig	0/2.7V	9k6 - 1Mbit/s	IR Tx signal to IR Module	
	IRRXN	IR	UEM	In	Dig	0/2.7V	9k6 - 1Mbit/s	IR Receiver signal from IR Module	
UIDR	UIDRV lines, no bus			vers: si	DLED				
	BUZZO	UEM	Buzzer	Out	Dig	350mA max. / Vbatt	1-5 kHz, PWM vol	Open collector sink switch output for Buzzer. Frequency controlled pitch, PWM for volume.	
	VIBRA	UEM	Vibra	Out	Dig	135mA max / Vbatt	64/128/ 256/512 Hz	Open collector sink switch/Frequency/ pwm output for buzzer	
	DLIGHT	UEM	UI	Out	Dig	100mA / Vbatt	Switch/ 100Hz pwm	Open drain switch/pwm output for display light	

PAMS Technical Documentation

RIP	Signal name		ected - to	UEN	/I I/O	Signal Properties A/D Levels-Freq./ Timing resolution		Description / Notes		
	KLIGHT	UEM	UI	Out	Dig	100mA / Vbatt	Switch/ 100Hz pwm	Open drain switch/pwm output for key light		
ACCD	OIF lines, no bus '	•	Wired Digital Accessory Interface, only to test pattern							
	MBUS	UEM	Test Pad 7	In/ Out	Dig	0/2.7 V	9k6bit/s	Mbus bidirectional asynchro- nous serial data bus/FDL clock, 0-8MHz depends on project		
	FBUSTXO	UEM	Test Pad 2	Out	Dig	0/2.7 V	9k6- 115kbit/s	Fbus asynchronous serial data output / FDL data out <1Mbit/s		
	FBUSRXO	Test Pad 3	UEM	In	Dig	0/2.7 V	9k6- 115kbit/s	Fbus asynchronous serial data input/FDL in, 0-8Mbit/s depends on project		
RTCB	ATT lines, no bus	*	Connector pads for Real Time Clock back up battery							
	VBACK	UEM	RTC- BATT	In/ Out	Vsu pply	+2-3.3V		For back up battery Li 6.8x1.4 2.3mAh@3.3V		
	GND	Global G	ND		Chrg	0				
VBB,	VBB, Globals instead of Bus*			Regulated BB Supply Voltages						
	VANA	UEM		Out	Vreg	2.78V +-3%	80mA max.	Disable in sleep mode		
	VFLASH1	UEM		Out	Vreg	2.78V +-3%	70mA max	1.5mA max. in sleep mode. VFLASH1 is always enabled after power on.		
	VFLASH2	UEM		Out	Vreg	2.78V +-3%	40mA max.	VFLASH2 is disabled by default		
	VIO	UEM		Out	Vreg	1.8V +-4.5%	150mA max.	1.5mA max. in sleep mode. VIO is always enabled after power on.		
	VCORE	UEM		Out	Vreg	1.0-1.8V +-5%	200mA max.	200 uA max. in sleep mode		
	VBACK	UEM		In/ Out	Vreg	3.0 V		No external use, only for RTC battery charging/discharging.		

UPP Block signals

System Module

Table 9: UPP to UEM Interfaces

RFCCONVDA(5:0)	See Table 8. UEM Block Signals to UPP / RFCCONVDA(5:0)
DECOMMOTEL (C.C.)	One Table & UEM Plant Councils to UPP (PEOCNIVOTP) (9.9)
RFCONVCTRL(2:0)	See Table 8. UEM Block Signals to UPP / RFCONVCTRL(2:0)
AUDUEMCTRL(3:0)	See Table 8. UEM Block Signals to UPP / AUDUEMCTRL(3:0)
AUDIODATA(1:0)	See Table 8. UEM Block Signals to UPP / AUDIODATA(1:0)
ISIMIF(2:0)	See Table 8. UEM Block Signals to UPP / ISIMIF(2:0)
PUSL(2:0)	See Table 8. UEM Block Signals to UPP / PUSL(2:0)
IACCDIF(5:0)	See Table 8. UEM Block Signals to UPP / IACCDIF(5:0)

Table 10: UPP - RF Interfaces

RFICCNTRL(2:0)	See Table 7. BB - RF Interface Signal Description / RFICCNTRL(2:0)			
GENIO(28:0)/rips 5 and 6	See Table 7. BB - RF Interface Signal Description / GENIO(28:0)			
RFCLK & GND	See Table 7. BB - RF Interface Signal Description / RFCLK (not BUS)			

Table 11: UPP Globals

RIP	Signal name	Connected from - to			UPP Signal Prop I/O A/D Levels- Timing reso		-Freq./	Description / Notes
UPP	UPP Globals, no bus, no rip			Powe	r suppl	ies and GND		
	VIO	UPP	UEM	In	Vreg	1.8V +- 4.5%	20mA max.	UPP I/O power supply
	VCORE	UPP	UEM	In	Vreg	1.0-1.8V +- 5%	100mA max.	UPP logics and processors' power supply, settable to reach the speed for various clock frequencies
	GND	UPP	VSSXX X			0		Global GND

Table 12: UPP to Memory Interfaces

MEMADDA(23:0)*	See Table 16. Memory Interface Signals / MEMADDA(23:0)*			
MEMCONT(9:0)	See Table 16. Memory Interface Signals / MEMCONT(8:0)			
GENIO(28:0)	See Table 16. Memory Interface Signals / GENIO(28:0)			

Table 13: UPP GENIOs. Collected, although these may be described also in other tables

RIP	Signal name	Connected from - to	UPP I/O	Signal Properties A/D Levels-Freq./ Timing resolution	Description / Notes
GENIO(28:0) General I/O Pins. Bolde				d lines are only valid for one p	product

PAMS Technical Documentation

RIP	Signal name		ected ı - to		UPP Signal Properties I/O A/D Levels-Freq./ Timing resolution		-Freq./	Description / Notes
2	Not Used	UPP		In/ Out	Dig	0-1.8 V	In / Pull Up	
3	Not Used	UPP		Out	Dig	0-1.8 V	In / Pull Down	
4	LCDRstX	UPP	Dis- play	Out	Dig	0-1.8 V	Out / 0	Display reset
5	TXP1	UPP	RF	Out	Dig	0-1.8 V	Out / 0	Tx Power Enable (low Band)
6	TXP2	UPP	RF	Out	Dig	0-1.8 V	Out / 0	Tx Power Enable (High Band)
7	Not Used	UPP		Out	Dig	0-1.8 V	In / Pull Down	
8	Not Used	UPP		Out	Dig	0-1.8 V	In / Pull Down	
9	Not Used	UPP		Out	Dig	0-1.8 V	In / Pull Down	
10	IRModSD	UPP	IR Mod- ule	Out	Dig	0-1.8 V	In / Pull Down	IR Module Shut Down
11	Bandset	UPP	RF / FMR	Out	Dig	0-1.8 V	In / Pull Up	Lo/Hi Band Selection (DAMPS) / Extended Band Selection (PDC)
12	AData	UPP		In/ Out	Dig	0-1.8 V	In / Pull Down	
13	IR ModuleFIR	UPP	IR / RF	Out	Dig	0-1.8 V	In / Pull Up	Fast IR
14	Not Used	UPP		In	Dig	0-1.8 V	In / Pull Down	
15	Not Used	UPP		Out	Dig	0-1.8 V	In / Pull Down	
16	Not Used	UPP		In	Dig	0-1.8 V	In / Pull Up	
17	Not Used	UPP		In	Dig	0-1.8 V	In / Pull Up	
18	Not Used	UPP		Out	Dig	0-1.8 V	In / Pull Down	
19	Not Used	UPP	LPRF/ RF	In/ Out	Dig	0-1.8 V	In / Pull Down	LPFR Data In / Accessory Buffer Enable / PAGain
20	Not Used	UPP	LPRF	Out	Dig	0-1.8 V	Out / 0	LPRF Data Out
21	Not Used	UPP	LPRF	Out	Dig	0-1.8 V	In / Pull Up	LPRF Sync / Accessory Mute
22	Not Used	UPP	LPRF	Out	Dig	0-1.8 V	In / Pull Down	LPRF Interrupt/Accessory Power Up
23	FLSWRPX	UPP	FLASH	Out	Dig	0-1.8 V	Out / 1	Write Protect, O-active when protected

RIP	Signal name	Connected from - to		UPP I/O		Signal Properties A/D Levels-Freq./ Timing resolution		Description / Notes
24	Not Used	UPP		Out	Dig	0-1.8 V	In / Pull Up	
25	Not Used	UPP		In/ Out	Dig	0-1.8 V	In / Pull Up	
26	Not Used	UPP		Out	Dig	0-1.8 V	In / Pull Down	
27	Not Used	UPP		In/ Out	Dig	0-1.8 V	In / Pull Up	
28	Not Used	UPP		Out	Dig	0-1.8 V	Out / 1	

Table 14: UPP to Key/Display Interfaces

RIP	Signal name		ected ı - to		PP 'O	Signal Properties A/D Levels-Freq./ Timing resolution		Description / Notes
KEYB	(10:0)*			Keybo	oard ma	trix		
0	P00	UPP	KEY- BOARD	In	Dig	0-1.8 V		Keyboard Matrix Line SO. Not used.
1	P01	UPP KEY- BOAR D	In	Dig	0-1.8 V		Keyboard Matrix Line S1	
2	P02						Keyboard Matrix Line S2	
3	P03							Keyboard Matrix Line S3
4	P04							Keyboard Matrix Line S4
5	P010	UPP	KEY-	In	Dig	0-1.8 V		Keyboard Matrix Line R0
6	P011		BOAR D					Keyboard Matrix Line R1
7	P012							Keyboard Matrix Line R2
8	P013							Keyboard Matrix Line R3
9	P014							Keyboard Matrix Line R4
10	P015	UPP	KEY- BOARD	In	Dig	0-1.8 V		Keyboard Matrix Line R5. Not used.
LCDU	I lines, no bus *	l .	Display 8	& UI Se	rial Inte	rface	1	
	LCDCamClk	UPP	DIS- PLAY	Out	Dig	0-1.8 V	4.86 MHz/ 2.43 MHz	Data clock for LCD serial bus, the speed may vary according to the display and direction requirements.
	LCDCamTxDa			I/ Out	Dig		4.86 MHz/ 2.43 Mbit/s	Serial Data to/from LCD
	LCDCSX			Out	Dig	-		LCD Chip Select
	GENIO(4)			Out	Dig			LCD Reset, 0-active

MEMORY Block Interfaces

Table 15: Memory Interface Signals

RIP	Signal name		ected 1 - to	I/O		Signal Pro A/D Level Timing res	s-Freq./	Description / Notes
MEM	ADDA(23:0)*		Externa	Memo	ry Acces	ss / Data Bus		
0- 15	EXTADDA 0:15	Mem- ory	UPP	In/ Out	Dig	0/1.8V	25 / 150 ns	Burst Flash Address (0:15) & Data (0:15) Direct Mode Address (0:7)
16- 23	EXTAD 16:23	Mem- ory	UPP	In	Dig	0/1.8V	25 / 150 ns	Burst Flash Address (16:23) Direct mode Data (8:15)
MEM	CONT(9:0)		External	Memor	y Contro	l Bus		
0	ExtWrX	Memor y_WE	UPP	In	Dig	0-1.8V		Write Strobe
1	ExtRdX	Memor y_OE	UPP	In				Read Strobe
2								
3	(FIsBAAX) VPPCTRL	Mem- ory (VPP)	UPP	In				VPP = 1.8V, => VIO used internally for VPP VPP = 5/12V, VPP used
4	FIsPS	Mem- ory PS	UPP	In/ Out			25 ns	Burst Mode Flash Data Invert Direct Mode Address (17)
5	FIsAVDX	Memor y_AVD	UPP	In				Flash Addr Data Valid/ Latch Burst Addr Direct Mode Address (18)
6	FIsCLK	Mem- nory CLK	UPP	In			50 MHz	Burst Mode Flash Clock Direct Mode Address (19)
7	FIsCSX	Memor y_CE	UPP	In				Flash Chip Select
8	FISRDY	Mem- ory RDY	UPP	Out				Ready Signal for Flash
9	FIsRSTX	Memor y_RP	UPP	Out				Flash reset, 0 active (FLSRPX)
GENI	0(28:0)	I	General	I/O Pin	used fo	r extra control	1	
23	FLSWRPX	Memor y_WP	UPP	Out	Dig	0/1.8V	0	Write Protect, 0-active protected.
Globa	als	1	Power su	upplies	and pro	duction test pad	1	
	VIO	UEM	FLASH	In	PWR	1.8V		FLASH power supply
	VPP	Prod TP 6	FLASH	In	Vpp	0/(1.8) /5/12V		FLASH programming/erasing voltage control. 5 or 12 exter- nal voltage for high speed pro- gramming
	GND							Global GND

IR Block Interfaces

Table 16: IR Block Signal Description

RIP	Signal name		Connected from - to		IR-Module Signal Prop I/O A/D Levels- Timing reso		-Freq./	Description / Notes		
IRIF,	no bus, no rips *			Modu	Module IR Interface					
	IRLEDC	UEM	IR	In	Dig	0/2.7V	9k6 - 1Mbit/s	IR Tx signal to IR Module		
	IRRXN	IR	UEM	Out	Dlg	0/2.7V	9k6 - 1Mbit/s	IR Receiver signal from IR Module		
GENI	GENIO(28:0)			Gene	General I/O Bus					
10	GENIO10	UPP	IR	In	Dig	0/1.8V		IR Module Shutdown, discrete inverting level shifter to 2.7V		
Globa	als		•		•					
	VBAT	Bat- tery	IR	In	Vbat	3.6V	1 = 500mA peak @Tx	Transmitter IR LED power supply from battery 3.6V nominal, 35.1V total range		
	VFLASH1	UEM	IR	In	Vreg	2.78V +- 3%	1=99uA max. @Rx	IR Receiver and Transmitter power supply		
	GND									

Audio Interfaces

Table 17: Internal Audio

RIP	Signal name		ected 1 - to	AUDIO I/O		Signal Properties A/D Levels-Freq./ Timing resolution		Description / Notes		
HP IN	ITERNAL AUDIO									
AUDI	AUDIO(4:0)			HP Internal microphone and earpiece IF between UEM and Mic/Ear circuity						
0	EARP	UEM	Ear-	Out	Ana	1.25V	Audio	Differential signal to HP inter-		
1	EARN		piece					nal Earpiece. Load resistance 32 ohm.		
2	MIC1N	Mic	UEM	In	Ana	100mVpp max diff.	Audio, AC	Differential signal from HP		
3	MIC1P					max um.	coupled to UEM	internal MIC		
4	MICB1	Mic	UEM	Out	V bias	2.1V typ./ <600 uA		Bias voltage for internal MIC		
Syste	m Connector		HP Inter	nal mic	rophone	IF between Syst	em Connecto	or and Mic/ear circuitry		
	MIC+	Mic	Audio - UEM	In Out	Ana Bias	2mV nom 2V2kohm	Audio DC bias	Mic bias and audio signal. Microphone mounted into system connector		
MIC			In	GND	0 (GND)		AGND coupled to GND at UEM			
Earpi	Earpiece Connector Pads			HP Internal IF between Earpiece and Mic/Ear circuitry						

PAMS Technical Documentation

RIP	Signal name	Connected from - to		AUDIO I/O		Signal Properties A/D Levels-Freq./ Timing resolution		Description / Notes
	"1"-EARP	EAR	Audio - UEM- EAR P/N	Out	Ana	1.25V	Diff DC coupled Audio	Differential audio signal to earpiece 32 ohm

Table 18: External Audio

RIP	Signal name		ected ı - to		IDIO /O	Signal Properties A/D Levels-Freq./ Timing resolution		Description / Notes
EXTE	RNAL AUDIO INT	TERFACE						
XAUI	010(9:0)*		External	Audio	IF between	een UEM and X-	audio circuiti	у
0	HEADINT	SysCon /HSet	UEM	Out	Dig	0/2.7V		Output to UEM for Headset Connector "HeadInt" Switch
1	HF	UEM	SysCon /HSet	In	Ana	1.0Vpp bias 0.8V	Audio	ExternalEarpiece Audio Signal Reference for DC coupled
2	HFCM				Ana	0.8 Vdc		external Earpiece
3	MICB2	UEM	SysCon /HSet	Out	V bias	2.1V tvp/ 600 uA		Bias voltage for external MIC
4	MIC2P	SysCon	UEM	Out	Ana	200mVpp	Audio	Differential signal from exter-
5	MIC2N	/Head- Set				max diff		nal MIC
6	HOOKINT	Sys Con	UEM	Out	Ana/ Dig	02.7 V	DC	HS Button interrupt, External Audio Accessory Detect (EAD)
7								Not used
8								Not used
9								Not used
Syste	m Connector		HP Inter	nal mic	rophone	e IF between syst	em connecto	r and Mic/Ear circuitry
	XMICP	HS/HF Mic	Audio - UEM	In Out	Ana Bias	2/60mV nom diff 2.1V bias 1kohm	Audio DC bias	Headset Mic bias and audio signal 2mV nominal. HF Mic signal 60mV nominal. Differen- tial symmetric input.
	XMICN		In		Ana	2/60mV nom diff GND/1kohm	Audio	Accessory detection by bias loading (EAD channel of slow ADC of UEM) Hook interrupt by heavy bias loading Mic - connecting to GND through lower part of split symmetric load resistor (2 x 1 kohm)

RIP	Signal name		ected ı - to		DIO 'O	Signal Properties A/D Levels-Freq./ Timing resolution		Description / Notes
	XEARP	HS/HF	Audio	In	Ana	100 mV nom	Audio	Quasi differential DC-coupled
	XEARN	EAR/ Amp.	- UEM			diff		earpiece/HF amplifier signal to accessory. DC biased to 0.8V; XEARN a quiet reference although have signal when loaded due to internal series resistor.
	INT	Switch	Audio - UEM	In	Dig	0/2.7V		HS interrupt from system con- nector switch when plug inserted.

Key/Display blocks

Table 19: KEY Block Interface Signal Description

RIP	Signal name	Connecte from - to		KEY Signal Pro I/O A/D Levels Timing reso		s-Freq./	Description / Notes			
KEYB	3(10:0)		Keyboa	Keyboard matrix, Roller key						
0	P00	Not used	UPP	Out	Dig	0/1.8V				
1	P01	Keyboard						Keyboard Matrix Line		
2	P02	Keyboard						Keyboard Matrix Line		
3	P03	Keyboard						Keyboard Matrix Line		
4	P04	Keyboard						Keyboard Matrix Line		
5	P10	Keyboard						Keyboard Matrix Line		
6	P11	Keyboard						Keyboard Matrix Line		
7	P12	Keyboard						Keyboard Matrix Line		
8	P13	Keyboard						Keyboard Matrix Line		
9	P14	Keyboard						Keyboard Matrix Line		
10	P15	Not Used								
PWR.	PWR_KEY			Power Key, not a member of the keyboard matrix						
	PWR_KEY	Power key	UEM	Out	Dig	0/Vbatt		Power key, not a member of the keyboard matrix		

Table 20: Display block Signal Description

RIP	Signal name		onnected from - to		play 'O	Signal Properties A/D Levels-Freq./ Timing resolution		Description / Notes
LCDUI(2:0)			Display & UI Serial Interface					
0	LCDCAMCLK	UPP	Displ	In	Dig	0/1.8V	1 MHz	Clock to LCD
1	LCDCAMTXD	UPP	Displ	In/ Dig Out		0/1.8V	1 MHz	Data to/from LCD

PAMS Technical Documentation

RIP	Signal name		ed from to	Display I/O		Signal Properties A/D Levels-Freq./ Timing resolution		Description / Notes
2	LCDCSX	UPP	Displ	In	Dig	0/1.8V		LCD Chip Select
GENI	0(28:0)		General	I/O Pins	5			
4	LCDRstX	UPP	Displ	Out	Dig	0/1.8V	Out / 0	Display Reset, 0-active

Baseband External Connections

Table 21: System Connector Interface

RIP	Signal name		ed from to	Sys Conn I/O		Signal Properties A/D Levels-Freq./ Timing resolution		Description / Notes
Syste	m Connector		HP Inter	nal mic	rophone	e IF between	System Con	nector and Mic/Ear circuitry
	XMICP	HS/HF Mic	Audio - UEM	In Out	Ana Bias	2/60mV nom diff 2V2koh m	Audio DC bias	Headset Mic bias and audio sig- nal 2mV nominal. Hf Mic signal 60mV nominal. Differential sym- metric output.
	XMICN			In	Ana	2/60mV nom diff	Audio	Accessory detection by bias load- ind. Hook interrupt by heavy bias loading.
	XEARP	HS/HF	Audio-	In	Ana	100mV	Audio	Quasi differential DC-coupled
	XEARN	EAR/ Amp.	UEM			nom diff		earpiece/HF amplifier signal to accessory. DC biased to 0.8V; XEARN a quiet reference although have signal when loaded due to internal series resistor.
	INT	Switch	Audio - UEM	In	Dig	0/2.7V		HS interrupt from system connector switch when plug inserted
CHA	RGER INTERFACE							
CHA	CHARGER lines, no bus *							
	VCHARIN	Charge r	UEM	In	Vchr	< 16V <1.2A	DC	Vch from Charger Connector, max 20V
	GND				GND			GND from/to Charger connector

Table 22: Battery Connector Interface

	RIP	Signal name		ted from to	 Conn 'O	Signal Properties A/D Levels-Freq./ Timing resolution		Description / Notes
Ī		GND	Glo-	Batt -				Global GND
		VBAT	bally	Batt +	Vbat t	3.0-5.1V	DC	Battery Voltage

RIP	Signal name	Connected from - to		Batt Conn I/O		Signal Properties A/D Levels-Freq./ Timing resolution		Description / Notes
	BSI		UEM		Ana Ana	0-2.7V	Pull down res	Battery Size Indicator Resistor, 100 kohm pull up to 2.78V(VFLASH)
	BTEMP		UEM					Btemp NTC Resistor, 100 kohm pull up to 2.78V(VANA)

Test Pattern for Production Tests

Table 23: Test Pattern Interface Signal Description

RIP	Signal name		ted from to	_	JI Signal Properties 'O A/D Levels-Freq./ Timing resolution		-Freq./	Description / Notes
2	FBUSTX / FDLTX	Test Point	UEM	Out	Dig	0/2.7V		Fbus asynchronous serial data output / FDL
3	FBUSRX / FDLRX	Test Point	UEM	In	Dig	0/2.7V		Fbus asynchronous serial data input / FDL RxData
6	VPP	Test Point	Mem- ory	Out	Ana	0/5/12V		External Flash Programming Voltage for Flash Memory
7	MBUS / FDL- CLK	Test Point	UEM	In/ Out	Dig	0/2.7V	9k6bit/s	Mbus bidirectional asynchro- nous serial data bus/FDL Clock
8	GND	Test Point	ВВ					Ground

RF Module

Requirements

The NPW-1 RF module supports the following systems:

- AMPS
- TDMA800
- TDMA1900

Hence, the minimum transceiver performance requirements are described in TIA/EIA-136-270. The NPW-1 RF must follow the requirements in the revision A. The EMC requirements are set by FCC 47CFR 15.107 (conducted emissions), 15.109 (radiated emissions, idle mode) and 22.917 (radiated emissions, call mode).

The dualband RF-module is capable of seamless operation between the 800 MHz and 1900 MHz bands, with measuring capability for cross-band hand-off and maho-measurements.

Design

The RF design is centered around the SAFARI RF-IC. The SAFARI consists of receivers, transmitter IF parts, highband TX upconverter and all PLL's. RF filtering, 2G LNA, power amplifiers, lowband TX upconverter and TX power detection circuitry are left outside SAFARI.

The phone comprises of one single-sided 8 –layer PWB. A single multiwall RF shield is used and this sets the maximum component height to 2.0mm. An internal antenna is located on the top of the phone and there is room for a 4.0mm high ceramic duplexer under the antenna assembly.

Software Compensations

The following software compensations are required:

- Power levels temperature compensation
- Power levels channel compensation
- Power level reduction due to low battery Voltage
- TX Power Up/Down Ramps
- PA's bias reference currents vs. power, temp and operation mode
- RX IO DC offsets
- RSSI channel compensation

RSSI temperature compensation

Main Technical Characteristics

RF Frequency Plan

The NPW-1 frequency plan is shown in the figure below. A 19.44 MHz VCTCXO is used for UHF and VHF PLLs and as a baseband clock signal. All RF locals are generated in PLLs.

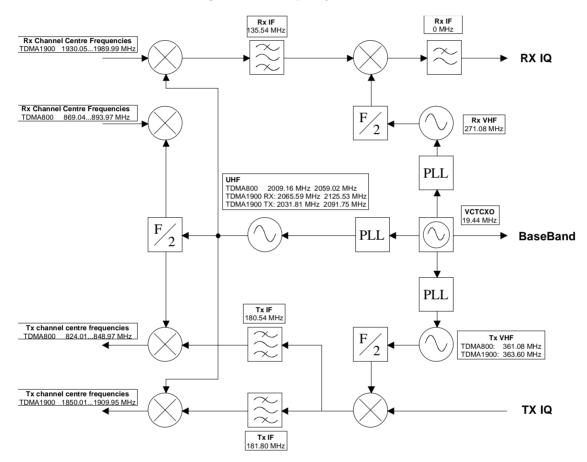


Figure 11: RF Frequency Block Plan

The RX intermediate frequency is the same on both operating bands. Due to the AMPS mode, simultaneous reception and transmission, TX and RX IF frequencies are exactly 45MHz apart from each other. RXIF is 135.54 MHz and TXIF 180.54MHz. The RXIF frequency is set so that it is not a multiple of either of VHF's comparison frequency (120k). The digital only operation on highband allows a free selection of the TX IF frequency, since separate TXIF filters are implemented. Hence, highband TX IF frequency is freely fixed to 181.8MHz due to best possible spurious signal filtering. Therefore, the UHF frequency needs to be changed according to TX and RX slots in TDMA1900 operation.

Page 47

DC Characteristics

Power Distribution Diagram

Note: The current values in the figure below are not absolute values and cannot be measured. These values represent maximum/typical currents drawn by the corresponding RF or SAFARI blocks in use, and are, therefore, dependent on the phone's operating mode and state.

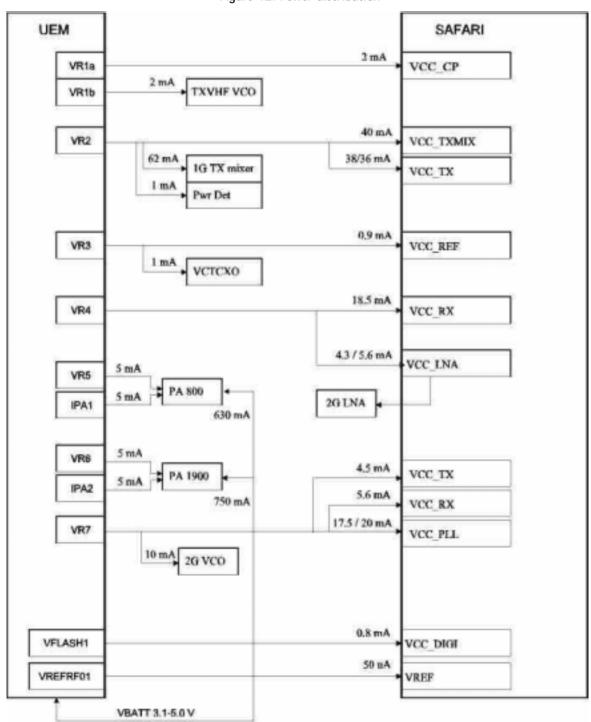


Figure 12: Power distribution

Regulators

The regulator circuit is the UEM and the specifications can be found in the table below:

Regulator name Output voltage (V) Regulator Max. RF total RF total 2GHz current (mA) 1GHz VR1 a/b $4.75 \pm 3\%$ 10 4 4 VR2 $2.78 \pm 3\%$ 100 100 76 VR3 $2.78 \pm 3\%$ 20 2 2 VR4 23 24 $2.78 \pm 3\%$ 50 VR5 5 5 $2.78 \pm 3\%$ 50 VR6 $2.78 \pm 3\%$ 50 5 5 VR7 2.78 ± 3% 45 40 45 IPA1, IPA2 2.7 max. 1 ± 10% 1.3 - 5.01.3 - 3.7 $3 \pm 4\%$ $3.5 \pm 4\%$ $5 \pm 3\%$ VREFRF01 0.12 0.05 0.05 $1.35 \pm 0.5\%$ VFLASH1 70 $2.78 \pm 3\%$ 1

Table 24: Regulator specifications

Receiver

The receiver shows a superheterodyne structure with zero 2nd IF. Lowband and highband receivers have separate frontends from the diplexer to the first IF. Most of the receiver functions are integrated in the RF ASIC. The only functions out of the chip are highband LNA, duplexers and SAW filters. In spite of a slightly different component selection, the receiver characteristics are very similar on both bands.

An active 1st downconverter sets naturally high gain requirements for preceding stages. Hence, losses in very selective frontend filters are minimized down to the limits set by filter technologies used and component sizes. LNA gain is set up to 16dB, which is close to the maximum available stable gain from a single stage amplifier. LNAs are not exactly noise matched in order to keep passband gain ripple in minimum. Filters have relative tight stopband requirements, which are not all set by the system requirements but the interference free operation in the field. In this receiver structure, linearity lies heavily on mixer design. The 2nd order distortion requirements of the mixer are set by the 'half IF' suppression. A fully balanced mixer topology is required. Additionally, the receiver 3rd order IIP tends to depend on active mixer IIP3 linearity due to pretty high LNA gain.

IF stages include a narrowband SAW filter on the 1st IF and a integrated lowpass filtering on zero IF. SAW filter guarantees 14dBc attenuation at alternating channels, which gives acceptable receiver IMD performance with only moderate VHF local phase noise performance. The local signal's partition to receiver selectivity and IMD depends then mainly on the spectral purity of the 1st local. Zero 2nd IF stages include most of receiv-

ers signal gain, AGC control range and channel filtering.

Table 25: RF Characteristics

ITEM	NMP Re	quirement		
	TDMA, AMPS 800	TDMA 1900		
RX frequency range, DAMPS 800	869.01 893.97	1930.050 1989.990		
LO frequency range	2009.1 2059.2	2065.59 2125.53		
1st IF frequency	13	5.54		
Channel NBW, RF	2	8.6		
IF 1 3dB roll off min. frequency (+-?f)		13		
2nd IF min. 3dB bandwidth	16 / IC	Q-branch		
Max total group delay at 3dB bandwidth				
C/N for sensitivity, digital analog		7 3.5		
C/I for selectivity, digital analog	8 4			
Sensitivity, digital mode static ch (BER < 3%) ANALOG MODE (sinad >12Db)	-110 (min.) -116 (min.)	-110 (min.)		
Adjacent channel selectivity, digital analog	13 16*	13		
Alternate channel selectivity, digital analog	45 65*	45		
IMD attentuation selectivity, digital analog close spaced (60/120) analog wide spaced (330/660)	65 65* 70*	65		
Cascaded NF, digital analog	< 9.5 < 9.5	< 9.5		
Cascaded IIP 3, digital 120/240, 240/480 kHz analog 60/120 kHz analog 330/660 kHz	> -7.7 > -17* > -8*	> -8		
Available receiver gain digital/analog	85 (min.)			
RF front end gain control range, A G C 1 step	20			
1st IF gain control range, A G C 2 step	30			
R X 2nd IF gain control range, 8x6dB steps	42			
Min signal level at RX-ADC input @ sensitivity digital analog	-31 -25	-31		
Input dynamic range	-1162.0			
Gain relative accuracy in receiving band **	2			
Gain absolute accuracy in receiving band **	4			

System Module

Table 25: RF Characteristics

ITEM	NMP Requirement		
* referenced to the sensitivity level ** After production alignment			

AMPS/TDMA 800 MHz Front End

Default vendor for 881.5MHz bandfilter is Murata, type 4146

Table 26: RX800 Front End Characteristics Ant to 1st Mixer

Parameter	MIN	ТҮР	MAX	Unit/Notes
Diplexer input loss	0.35	0.4	0.45	dB
Duplexer input loss	2.5	3	4.1	dB
LNA gain: High gain mode Low gain mode	16 -4.5	16.5 -4	17.3 -3.8	dB dB
LNA noise figure*	1.4	1.7	2.3	dB
LNA 3rd order intercept (IIP3)*	-4	-3	-1.5	dBm
Bandfilter input loss	1.5	2	2.5	dB
Mixer gain*	6	7.5	8	dB
Mixer NF*	8	9	10.5	dB
Mixer IIP3*	4	4.5	5	dBm
Total:				
Gain	18.2	18.6	20	dB
Noise Figure	4.6	5.5	7	dB
3rd order intercept (IIP3)	-8.9	-7.5	-6.8	dBm
*see Safari spec/measurements				

TDMA 1900 MHz Front End

TDMA 1900 LNA is discrete and it is based on Infineon BFP620 Silicon-Germanium npn BJT. It uses integrated Bias control block, which is inside SAFARI. In the normal high gain operation mode, the bias voltage 2.78V is connected onto the collector and the sink type constant current source is connected onto the emitter. The bias current source is adjustable from 0.5mA to 7.5mA with 0.5mA step. The base is biased from 2.78V voltage via resistor.

When LNA AGC step is enabled, LNA is in low gain operation mode. Voltage and current bias sources and direction of current are switched on the contrary. In this operation mode the LNA has good linearity, still low noise figure and about -3 dB gain.

During TX-slot LNA is in power down mode, which is executed by switching the bias current source to 0 mA.

Alternative LNA1900 solutions are based on Infineon BFP520 BJT or NEC NE34018 Gallium Arsenide Hetero-Junction FET. The same bias and matching circuit topology is applicable for BFP620 and BFP520, only values of impedance matching components need to be chanced.

When used NE34018 the gate is connected on zero potential, otherwise the bias circuit is same as with BFP620 and BFP520. The circuit topology is little different and small modifications on schematic and layout are needed when using NE34018.

Table 27: RX 1900 Front End Characteristics Antenna to 1st Mixer

Parameter	MIN	ТҮР	MAX	Unit/Notes
Diplexer input loss	0.45	0.5	0.55	dB
Duplexer input loss	1.3	2.5	3.0	dB
LNA gain: High gain mode Low gain mode	14 -3.5	15 -3.0	15.5 -2.0	dB dB
LNA noise figure*	1.0	1.2	1.5	dB
LNA 3rd order intercept (IIP3)*	-3	-2	-1	dBm
Bandfilter input loss		3.6	4.5	dB
Mixer gain*	6.5	7.5	8.5	dB
Mixer NF*	9	10	11	dB
Mixer IIP3*	4	4.5	5	dBm
Total:				
Gain	16.0	17.0	18.0	dB
Noise Figure	5.0	5.5	6.5	dB
3rd order intercept (IIP3)	4	5	6	dB
*see Safari spec/measurements		-70	-68	dBc

Table 28: RF - IX Specification

Parameter	Minimum	Typical/ Nominal	Maximum	Unit/Notes			
Total							
Power up time			0.1	ms			
Noise figure, total			9.5	dB			
3rd order input intercept point		-25		dBm			
Max voltage gain, Mixer + 2nd IF (IF+2nd AGC max)	78.5			dB			
Min voltage gain, Mixer + 2nd IF (IF+2nd AGC min.)			6	dB			

Parameter	Minimum	Typical/ Nominal	Maximum	Unit/Notes
Gain charge,		1.4	0.9	dB, temp
Mixer+2nd IF				-30+85 C
IQ mixers + AMP2				
RF input impedance differential		1.2		kohm/pF
RF input frequency range		135.54		MHz
Conversion gain @ RI=1kohm	23.5	24	24.5	dB
IF AGC gain range (5x6 dB)	30			dB
IF AGC gain step (5 steps)		6		dB
IF AGC gain error relative to max gain	-0.5		+0.5	dB
AMP2 gain		18		dB
-3dB frequency	21	25	29	kHz
LPF: 4th order Chebysev		•		
LPF gain		0		dB
Corner frequency tuning range	14		17	kHz
Corner frequency tuning step			1	kHz
Attentuation @ 30 kHz *	24			dB
Attentuation @ 60 kHz *	55			dB
Attentuation @ 120 kHz *	80			dB
Attentuation @ 240 kHz *	60			dB
Attentuation @ >480 kHz *	40			dB
AGC				
AGC gain range	-6		36**	dB
AGC gain range step 7 steps		6		dB
AGC gain error relative to max gain	-0.5		+0.5	dB
Max IF/2nd IF buffer output level			3	V pp (differential)

Frequency Synthesizers

NPW-1 synthesizer consists of three synthesizers, one UHF synthesizer and two VHF synthesizers. UHF synthesizer is based on integrated PLL and external UHF VCO, loop filter and VCTCXO. It main goal is to achieve the channel selection, thus for dual band operations associated with dual mode. Due to the RX and TX architecture this UHF synthesizer is used for down conversion of the received signal and for final up conversion in transmitter. A common 2GHz UHFVCO module is used for operation on both low and highband. Frequency divider by two is integrated in Safari.

Two VHF synthesizers consists of: RX VHF Synthesizer includes integrated PLL and VCO and external loop filter and resonator. The output of RX-VHF PLL is used as LO signal for the second mixer in receiver. TX VHF Synthesizer includes integrated PLL and external amplifier, loop filter and resonator. The output of TX-VHF PLL is used as a LO signal for the IQ-modulator of the transmitter. See depicted block diagrams and synthesizer characteristics from synthesizer specification document [6].

Transmitter

The transmitter RF architecture is up-conversion type (desired RF spectrum is low side injection) whit (RF-) modulation and gain control at IF. The IF frequency is band related being 180.54MHz at cellular band and 181.80MHz at PCS band. The cellular band is 824.01-848.97MHz and PCS band is 1850.01-1909.95MHz.

Common IF

The RF-modulator is integrated with PGA (Programmable Gain Amplifier) and IF output buffer inside SAFARI_T RFIC-chip (later as Safari). I- and Q-signals, that are output signals from BB-side SW IQ-modulator, have some filtering inside Safari before RF-modulation is performed. The required LO-signal from TXVCO is buffered with phase sifting in Safari. After modulation ($\pi/4$ DQPSK or FM) the modulated IF signal is amplified in PGA.

Cellular Band

At operation in cellular band the IF signal is buffered at IF output stage that is enabled by TXP1 TX control. The maximum linear (balanced) IF signal level to 50Ω load is about – 8 dBm.

For proper AMPS-mode receiver (duplex)sensitivity IF signal is filtered in strip-filter before up-conversion. The upconverter mixer is actually a mixer with LO and output driver being able to deliver about +6dBm linear output power. Note, that in this point, term linear means -33dB ACP. The required LO power is about -6dBm. The LO signal is fed from Safari.

Before power amplifier RF signal is filter in band filter. The typical insertion loss is about –2.7dB, and maximum less than –3.5dB. The input and output return losses are about – 10dB.

Power amplifier is $50\Omega/50\Omega$ module. It does not have own enable/disable control signal, but it can be enabled by bias voltage and reference bias current signals. The gain window is +27 to +31dB and linear output power is +30dBm (typical condition) with –28dB ACP. The nominal efficiency is 50%.

PCS Band

At operation in PCS band the IF signal is routed outside from Safari to be filtered in TX IF SAW filter, and after that back to Safari, to the up-converter mixer. The LO-signal to the mixer is buffered and balanced inside Safari. The mixer output is enabled by TXP2 TX control signal. The maximum linear (balanced) RF signal level to 50Ω load is about +7dBm.

After Safari balanced RF-signal is single-ended in 1:1 balun and then filtered in SAW filter. The typical insertion loss is about –4.0dB, and maximum less than –5.7dB. This filter have relatively high pass band ripple about 1.0-1.5dB, largest insertion being at high end of the band. The input and return losses are about –10dB.

Power amplifier is $50\Omega/50\Omega$ module. It does not have own enable/disable control signal, but it can be enabled by bias voltage and reference bias current signals. The gain window is +31 to +36dB and linear output power is +30dBm (typical condition) with –28dB ACP. The nominal efficiency is 40%.

Power Control

For power monitoring there is a power detector module (PDM) build up from a (dual)coupler, a biased diode detector and an NTC resistor. RF signals from both bands are routed via this PDM. The RF isolation between couplers is sufficient not to loose filtering performance given by duplex filters.

The diode output voltage and NTC voltage are routed to BB A/D converters for power control purpose. The TX AGC SW takes samples from diode output voltage and compares that value to target value, and adjust BB I-and Q-signal amplitude and/or Safari PGA settings to keep power control in balance.

NTC voltage is used for diode temperature compensation and for thermal shut down when radio board's temperature exceeds +85°C.

False TX indication is based on detected power measurement when carrier is not on.

The insertion loss of coupler is -0.42dB (max) at cellular band and -0.48dB (max) at PCS band. Typical values for insertion losses are about -0.2dB. The filtering performance of diplexer is taken in account in system calculations.

Signal levels

Table 29: Typical Signal Levels

Power Level	PGA	Pout
2	3	26.5/27.3
3	5	-4dB
4	6	-4dB
5	7	-4dB
6	8	-4dB
7	9	-4dB
8	10	-4dB
9	11	-4dB
10	12	-4dB

(For AMPS mode PL2 26.5 dBm, PL2 27.3 dBm for digital mode both bands)

NPW-1

Antenna Circuit

Here the antenna circuit stands for duplex filters and the diplexer. The cellular band duplex filter is band pass type SAW filter with typical insertion loss about -2.0dB. The PCS band duplex filter is band stop (for receiver band) type ceramic filter and it's typical insertion loss is about -1.7dB. Insertion losses of diplexer are -0.45dB and -0.55dB (at maximum) for cellular and PCS band, typical values being about -0.30dB and -0.35dB.

RF Performance

The output power tuning target for power level 2 after diplexer (or after switch for external RF) is +27.3dBm for $\pi/4$ DQPSK type of modulation and +26.5dBm for FM type of modulation. Power levels downwards from PL2 are -4dB below next to highest power level, PL10 being -4.7dBm (and PL7 +6.5dBm with FM type of modulation). Modulation accuracy and ACP shall be within limits specified in IS-136/137.

Antenna

The NPW-1 antenna solution is an internal dual resonance PIFA-antenna. This antenna has a common feeding point for both antenna radiators, which results in the need for a diplexer. In a singleband transceiver, a SMD compatible through chip can be used.

This page intentionally left blank.